Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 25(5): 207, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37123020

RESUMO

Cancer stem cells (CSCs) are known to be a major cause of metastasis, resistance and recurrence. Spheroid formation is one of the methods used to recruit CSCs utilizing an anchorage-independent environment in vitro. It was aimed to investigate the availability of spheroid formation culture methods in the research field of CSCs and resistance using 5-fluorouracil (5-FU)-resistant colorectal cancer cells. The wild type SNU-C5 and 5-FU-resistant SNU-C5 (SNU-C5/5-FUR) cells were cultured as usual (monolayer), and in 3-dimensional non-adhesive environments supplemented with fetal bovine serum (FBS) or growth factors, respectively. The characteristics of the spheroids were evaluated by morphometry, cell viability assay, western blotting, immunocytochemistry and enzyme-linked immunosorbent assay. Spheroid formation was induced in an environment supplemented with FBS, while SNU-C5/5-FUR cells only formed spheres in media supplemented with GFs. Sphere-formed cells showed slower cell proliferation than cells from monolayer, which coincided with an increased level of p21 and a decreased level of ß-catenin. Markers for CSCs and drug resistance were not significantly changed after spheroid formation. Sphere-formed cells showed significantly increased levels of soluble E-cadherin, particularly in the environment supplemented with FBS. These results suggested that spheroid formation may be related to soluble E-cadherin, but is not related to CSCs or resistance markers.

2.
Nucleic Acids Res ; 50(18): 10469-10486, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36155803

RESUMO

Human CtIP maintains genomic integrity primarily by promoting 5' DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP's function during HR repair.


Assuntos
Reparo do DNA , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Cell Death Dis ; 13(6): 528, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668076

RESUMO

The cell signaling factors EGFR, EphA2, and Ephexin1 are associated with lung and colorectal cancer and play an important role in tumorigenesis. Although the respective functional roles of EGFR and EphA2 are well known, interactions between these proteins and a functional role for the complex is not understood. Here, we showed that Ephexin1, EphA2, and EGFR are each expressed at higher levels in lung and colorectal cancer patient tissues, and binding of EGFR to EphA2 was associated with both increased tumor grade and metastatic cases in both cancer types. Treatment with Epidermal Growth Factor (EGF) induced binding of the RR domain of EGFR to the kinase domain of EphA2, and this binding was promoted by Ephexin1. Additionally, the AKT-mediated phosphorylation of EphA2 (at Ser897) promoted interactions with EGFR, pointing to the importance of this pathway. Two mutations in EGFR, L858R and T790M, that are frequently observed in lung cancer patients, promoted binding to EphA2, and this binding was dependent on Ephexin1. Our results indicate that the formation of a complex between EGFR, EphA2, and Ephexin1 plays an important role in lung and colorectal cancers, and that inhibition of this complex may be an effective target for cancer therapy.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Receptor EphA2 , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptor EphA2/genética , Receptor EphA2/metabolismo
4.
Cell Death Dis ; 13(4): 309, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387978

RESUMO

The Hsp70-binding protein 1 (HspBP1) belongs to a family of co-chaperones that regulate Hsp70 activity and whose biological significance is not well understood. In the present study, we show that when HspBP1 is either knocked down or overexpressed in BRCA1-proficient breast cancer cells, there were profound changes in tumorigenesis, including anchorage-independent cell growth in vitro and in tumor formation in xenograft models. However, HspBP1 did not affect tumorigenic properties in BRCA1-deficient breast cancer cells. The mechanisms underlying HspBP1-induced tumor suppression were found to include interactions with BRCA1 and promotion of BRCA1-mediated homologous recombination DNA repair, suggesting that HspBP1 contributes to the suppression of breast cancer by regulating BRCA1 function and thereby maintaining genomic stability. Interestingly, independent of BRCA1 status, HspBP1 facilitates cell survival in response to ionizing radiation (IR) by interfering with the association of Hsp70 and apoptotic protease-activating factor-1. These findings suggest that decreased HspBP1 expression, a common occurrence in high-grade and metastatic breast cancers, leads to genomic instability and enables resistance to IR treatment.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Reparo de DNA por Recombinação
5.
Nucleic Acids Res ; 50(3): 1501-1516, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35061896

RESUMO

Homologous recombination (HR) is critical for error-free repair of DNA double-strand breaks. Chromatin loading of RAD51, a key protein that mediates the recombination, is a crucial step in the execution of the HR repair. Here, we present evidence that SUMOylation of RAD51 is crucial for the RAD51 recruitment to chromatin and HR repair. We found that topoisomerase 1-binding arginine/serine-rich protein (TOPORS) induces the SUMOylation of RAD51 at lysine residues 57 and 70 in response to DNA damaging agents. The SUMOylation was facilitated by an ATM-induced phosphorylation of TOPORS at threonine 515 upon DNA damage. Knockdown of TOPORS or expression of SUMOylation-deficient RAD51 mutants caused reduction in supporting normal RAD51 functions during the HR repair, suggesting the physiological importance of the modification. We found that the SUMOylation-deficient RAD51 reduces the association with its crucial binding partner BRCA2, explaining its deficiency in supporting the HR repair. These findings altogether demonstrate a crucial role for TOPORS-mediated RAD51 SUMOylation in promoting HR repair and genomic maintenance.


Assuntos
Rad51 Recombinase , Reparo de DNA por Recombinação , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , Recombinação Homóloga , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Sumoilação
6.
Cell Death Dis ; 12(11): 1013, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711817

RESUMO

ABSTRCT: Ephexin1 was reported to be highly upregulated by oncogenic Ras, but the functional consequences of this remain poorly understood. Here, we show that Ephexin1 is highly expressed in colorectal cancer (CRC) and lung cancer (LC) patient tissues. Knockdown of Ephexin1 markedly inhibited the cell growth of CRC and LC cells with oncogenic Ras mutations. Ephexin1 contributes to the positive regulation of Ras-mediated downstream target genes and promotes Ras-induced skin tumorigenesis. Mechanically, Akt phosphorylates Ephexin1 at Ser16 and Ser18 (pSer16/18) and pSer16/18 Ephexin1 then interacts with oncogenic K-Ras to promote downstream MAPK signaling, facilitating tumorigenesis. Furthermore, pSer16/18 Ephexin1 is associated with both an increased tumor grade and metastatic cases of CRC and LC, and those that highly express pSer16/18 exhibit poor overall survival rates. These data indicate that Ephexin1 plays a critical role in the Ras-mediated CRC and LC and pSer16/18 Ephexin1 might be an effective therapeutic target for CRC and LC.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Oncogenes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Prognóstico , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
7.
Technol Cancer Res Treat ; 20: 15330338211038487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490820

RESUMO

Objective: To investigate a feasible candidate for an appropriate cell line for the orthotopic renal cell carcinoma (RCC) model. Methods: Normal human proximal tubule cells (HK-2) and RCC cells were used for MTT assay, Western blotting, sphere-forming assay, and orthotopic injection of BALB/c-nude mice. Immunohistochemistry was adopted in tissue arrays and orthotopic tumors. Results: Primary RCC cells showed resistance to a GPX4 inhibitor compared to HK-2 and to metastatic RCC cells, Caki-1. Caki-2 and SNU-333 cells showed resistance to ferroptosis via increased GPX4 and FTH1, respectively. RCC cells showed increased αSMA, in which Caki-2 and SNU-333 cells exhibited different epithelial-mesenchymal transition and cancer stem cell markers. Caki-1 and SNU-333 cells formed spheres in vitro and orthotopic tumor masses in vivo. The injected SNU-333 tumor only showed high intensities of CD10 and PAX8, markers of renal origin. Conclusion: SNU-333 cell line exhibited resistance via iron metabolism and stemness, and had tumor-initiating capacities in vitro and in vivo. These results suggest that among the cells tested, SNU-333 cells were the most promising for the establishment of an orthotopic RCC model for further researches.


Assuntos
Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Renais/patologia , Animais , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Sobrevivência Celular , Ferroptose/genética , Humanos , Imuno-Histoquímica , Neoplasias Renais/tratamento farmacológico , Masculino , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Surg Radiol Anat ; 43(7): 1045-1052, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33580306

RESUMO

PURPOSE: From the evolutionary myology, the additional tendon of the extensor hallucis longus (EHL) muscle represents the sample of a new acquisition. We aimed to determine whether the insertion pattern of the EHL muscle differs in Koreans according to demographic populations, especially between Jeju islanders and the Korean Peninsula inhabitants. METHODS: We used 69 Korean cadavers and classified the tendinous insertion of the EHL muscle as Pattern I, Pattern II, and Pattern III. The ratio of each Pattern in adult cadaveric samples was compared between demographic populations. RESULTS: The proportion of Pattern I, Pattern II, and Pattern III of the EHL muscle was 30.43, 63.77, and 5.80%, respectively, further divided into 18.00 vs. 36.04%, 72.00 vs. 60.47%, 10.00 vs. 3.49% in Jeju islanders vs. peninsular Koreans. There was a considerable difference in the insertion patterns of the EHL muscle in each regional group (p = 0.032), but not in each gender, age, and body sides of lower limbs. CONCLUSION: The findings of this study indicate that there was a higher incidence of the accessory tendon(s) of the EHL muscle in Koreans and the distributed insertion patterns of the EHL muscle was significantly different between Jeju islanders and peninsular Koreans.


Assuntos
Variação Anatômica , Hallux/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Dissecação , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia , Adulto Jovem
9.
Korean J Physiol Pharmacol ; 24(3): 267-276, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32392918

RESUMO

In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

10.
Nat Commun ; 9(1): 2284, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875365

RESUMO

This Article contains errors in Fig. 3, Fig. 4 and Fig. 7, for which we apologize. In Fig. 3, panel 'b', the 0.5 hour time point after Ku55933 treatment images were inadvertently replaced with duplicates of the 3 hour time point after Ku55933 treatment images in Fig. 3b. Additionally, in panel 'b', the 0.5 hour time point after Nu7026 treatment images were inadvertently replaced with duplicates of the 180 min time point after siMDC1 treatment images in Fig. 3d. In Fig. 4, panel 'g', RNF168 foci in U2OS cell images were inadvertently replaced with duplicates of RNF168 foci in HeLa cell images in Fig. 4f. In Fig. 7, panel 'b', the DAPI images 0.5 hours after IR under siID3 treatment were inadvertently replaced with DAPI images of a different field of view from the same experiment. Additionally, in panel 'i', the shID3 mock-treated GFP-ID3 cells image was inadvertently replace with duplications of the shID3 mock-treated GFP-ID3 cells image in Fig. 7g.

11.
Nat Commun ; 8(1): 903, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026069

RESUMO

MDC1 plays a critical role in the DNA damage response (DDR) by interacting directly with several factors including γ-H2AX. However, the mechanism by which MDC1 is recruited to damaged sites remains elusive. Here, we show that MDC1 interacts with a helix-loop-helix (HLH)-containing protein called inhibitor of DNA-binding 3 (ID3). In response to double-strand breaks (DSBs) in the genome, ATM phosphorylates ID3 at serine 65 within the HLH motif, and this modification allows a direct interaction with MDC1. Moreover, depletion of ID3 results in impaired formation of ionizing radiation (IR)-induced MDC1 foci, suppression of γ-H2AX-bound MDC1, impaired DSB repair, cellular hypersensitivity to IR, and genomic instability. Disruption of the MDC1-ID3 interaction prevents accumulation of MDC1 at sites of DSBs and suppresses DSB repair. Thus, our study uncovers an ID3-dependent mechanism of recruitment of MDC1 to DNA damage sites and suggests that the ID3-MDC1 interaction is crucial for DDR.MDC1 is a key component of the DNA damage response and interacts with several factors such as γ-H2AX. Here the authors show that MDC1 interacts with ID3, facilitating MDC1 recruitment to sites of damage and repair of breaks.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bovinos , Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Células HEK293 , Células HeLa , Sequências Hélice-Alça-Hélice , Histonas/metabolismo , Humanos , Proteínas Inibidoras de Diferenciação , Camundongos , Proteínas de Neoplasias , Radiação Ionizante , Ratos
12.
Cancer Res ; 75(7): 1298-310, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25627978

RESUMO

MDC1 is critical component of the DNA damage response (DDR) machinery and orchestrates the ensuring assembly of the DDR protein at the DNA damage sites, and therefore loss of MDC1 results in genomic instability and tumorigenicity. However, the molecular mechanisms controlling MDC1 expression are currently unknown. Here, we show that miR-22 inhibits MDC1 translation via direct binding to its 3' untranslated region, leading to impaired DNA damage repair and genomic instability. We demonstrated that activated Akt1 and senescence hinder DDR function of MDC1 by upregulating endogenous miR-22. After overexpression of constitutively active Akt1, homologous recombination was inhibited by miR-22-mediated MDC1 repression. In addition, during replicative senescence and stress-induced premature senescence, MDC1 was downregulated by upregulating miR-22 and thereby accumulating DNA damage. Our results demonstrate a central role of miR-22 in the physiologic regulation of MDC1-dependent DDR and suggest a molecular mechanism for how aberrant Akt1 activation and senescence lead to increased genomic instability, fostering an environment that promotes tumorigenesis.


Assuntos
Reparo do DNA , Instabilidade Genômica , MicroRNAs/fisiologia , Proteínas Nucleares/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Idoso , Animais , Proteínas de Ciclo Celular , Senescência Celular , Dano ao DNA , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transativadores/metabolismo , Adulto Jovem
13.
Redox Rep ; 18(5): 165-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23883737

RESUMO

Mutations in mismatch repair (MMR) genes are commonly associated with the development of colorectal cancer. Additionally, base excision repair, which involves apurinic/apyrimidinic endonuclease 1 (APE1), recognizes and eliminates oxidative DNA damage. Here, we investigated the possible roles of APE1 in dextran sulfate sodium (DSS)-induced acute colitis using the young rat model. Four-week-old Sprague-Dawley rats were administered 2% DSS in drinking water for 1 week. MMR and APE1 expression levels were assessed by western blotting and immunohistochemistry. Following DSS treatment, growth of young rats failed and the animals had loose stools. Together with the histological changes associated with acute colitis, APE1 and MSH2 levels increased significantly at 3 and 5 days after DSS treatment, respectively. The difference between APE1 and MSH2 expression was significant. DSS-induced DNA damage and subsequent repair activity were evaluated by staining for 8-hydroxy-deoxyguanosine (8-OHdG) and APE1, respectively; 8-OHdG immunoreactivity increased throughout the colonic mucosa, while APE1 levels in the surface epithelium increased at an earlier timepoint. Taken together, our data suggest that changes in APE1 expression after DSS treatment occurred earlier and were more widespread than changes in MMR expression, suggesting that APE1 is more sensitive for prediction of DNA deterioration in DSS-induced colitis.


Assuntos
Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Animais , Colite/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ratos , Ratos Sprague-Dawley
14.
J Clin Invest ; 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23863623

RESUMO

Aberrant expression of apurinic-apyrimidinic endonuclease-1 (APEX1) has been reported in numerous human solid tumors and is positively correlated with cancer progression; however, the role of APEX1 in tumor progression is poorly defined. Here, we show that APEX1 contributes to aggressive colon cancer behavior and functions as an upstream activator in the Jagged1/Notch signaling pathway. APEX1 overexpression or knockdown in human colon cancer cell lines induced profound changes in malignant properties such as cell proliferation, anchorage-independent growth, migration, invasion, and angiogenesis in vitro and in tumor formation and metastasis in mouse xenograft models. These oncogenic effects of APEX1 were mediated by the upregulation of Jagged1, a major Notch ligand. Furthermore, APEX1 expression was associated with Jagged1 in various colon cancer cell lines and in tissues from colon cancer patients. This finding identifies APEX1 as a positive regulator of Jagged1/Notch activity and suggests that it is a potential therapeutic target in colon cancers that exhibit high levels of Jagged1/Notch signaling.

15.
Biochim Biophys Acta ; 1823(12): 2099-108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982065

RESUMO

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an essential role in double-strand break repair by initially recognizing and binding to DNA breaks. Here, we show that DNA-PKcs interacts with the regulatory γ1 subunit of AMP-activated protein kinase (AMPK), a heterotrimeric enzyme that has been proposed to function as a "fuel gauge" to monitor changes in the energy status of cells and is controlled by the upstream kinases LKB1 and Ca²âº/calmodulin-dependent kinase kinase (CaMKK). In co-immunoprecipitation analyses, DNA-PKcs and AMPKγ1 interacted physically in DNA-PKcs-proficient M059K cells but not in DNA-PKcs-deficient M059J cells. Glucose deprivation-stimulated phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, is substantially reduced in M059J cells compared with M059K cells. The inhibition or down-regulation of DNA-PKcs by the DNA-PKcs inhibitors, wortmannin and Nu7441, or by DNA-PKcs siRNA caused a marked reduction in AMPK phosphorylation, AMPK activity, and ACC phosphorylation in response to glucose depletion in M059K, WI38, and IMR90 cells. In addition, DNA-DNA-PKcs(-/-) mouse embryonic fibroblasts (MEFs) exhibited decreased AMPK activation in response to glucose-free conditions. Furthermore, the knockdown of DNA-PKcs led to the suppression of AMPK (Thr172) phosphorylation in LKB1-deficient HeLa cells under glucose deprivation. Taken together, these findings support the positive regulation of AMPK activation by DNA-PKcs under glucose-deprived conditions in mammalian cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Glioma/metabolismo , Glucose/deficiência , Quinases Proteína-Quinases Ativadas por AMP , Animais , Western Blotting , Células Cultivadas , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glioma/genética , Glioma/patologia , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , RNA Interferente Pequeno/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Cell Cycle ; 11(17): 3237-49, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22895183

RESUMO

The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65-171 is critical for p53R2-MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , MAP Quinase Quinase 2/metabolismo , Ribonucleotídeo Redutases/metabolismo , Anticorpos Monoclonais , Western Blotting , Linhagem Celular Tumoral , Raios gama , Vetores Genéticos/genética , Humanos , Imunoprecipitação , MAP Quinase Quinase 2/fisiologia , Fosforilação , Interferência de RNA , Contagem de Cintilação
17.
Nucleic Acids Res ; 39(6): 2130-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21075794

RESUMO

MSH6, a key component of the MSH2-MSH6 complex, plays a fundamental role in the repair of mismatched DNA bases. Herein, we report that MSH6 is a novel Ku70-interacting protein identified by yeast two-hybrid screening. Ku70 and Ku86 are two key regulatory subunits of the DNA-dependent protein kinase, which plays an essential role in repair of DNA double-strand breaks (DSBs) through the non-homologous end-joining (NEHJ) pathway. We found that association of Ku70 with MSH6 is enhanced in response to treatment with the radiomimetic drug neocarzinostatin (NCS) or ionizing radiation (IR), a potent inducer of DSBs. Furthermore, MSH6 exhibited diffuse nuclear staining in the majority of untreated cells and forms discrete nuclear foci after NCS or IR treatment. MSH6 colocalizes with γ-H2AX at sites of DNA damage after NCS or IR treatment. Cells depleted of MSH6 accumulate high levels of persistent DSBs, as detected by formation of γ-H2AX foci and by the comet assay. Moreover, MSH6-deficient cells were also shown to exhibit impaired NHEJ, which could be rescued by MSH6 overexpression. MSH6-deficient cells were hypersensitive to NCS- or IR-induced cell death, as revealed by a clonogenic cell-survival assay. These results suggest a potential role for MSH6 in DSB repair through upregulation of NHEJ by association with Ku70.


Assuntos
Antígenos Nucleares/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/fisiologia , Histonas/análise , Humanos , Autoantígeno Ku , Técnicas do Sistema de Duplo-Híbrido
18.
Urol Int ; 85(2): 216-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20530960

RESUMO

AIM: Since DNA damage-related apoptosis is raising concerns regarding abnormal spermatogenesis, we investigated the changes in γ-H2AX during testicular germ cell apoptotic responses in the varicocele model. MATERIALS AND METHODS: Varicocele was induced by partial ligation of the left renal vein and animals were sacrificed at 1, 3, and 4 weeks after varicocele creation. The levels of activated p53 and γ-H2AX formation were determined by Western blot analysis and immunohistochemistry. RESULTS: γ-H2AX formation was augmented after varicocele creation, while a significant increase in p53 phosphorylation was detected in a time course-dependent manner. Varicocele-dependent nuclear γ-H2AX staining in the primary spermatocytes was prominent as degenerative foci, while little differences could be detected in spermatogonia. CONCLUSIONS: These results show that experimental varicocele may induce p53-dependent apoptosis through activation of γ-H2AX in the primary spermatocytes, and suggest that γ-H2AX may be related to apoptotic signal transduction in experimental varicocele.


Assuntos
Apoptose , Histonas/metabolismo , Transdução de Sinais , Espermatócitos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Varicocele/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Espermatócitos/patologia , Espermatogônias/metabolismo , Espermatogônias/patologia , Fatores de Tempo , Varicocele/patologia
19.
Mol Cell Biol ; 29(8): 2264-77, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19188437

RESUMO

Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) dysregulation has been identified in several human tumors and in patients with a variety of neurodegenerative diseases. However, the function of Ape1/Ref-1 is unclear. We show here that Ape1/Ref-1 increases the expression of glial cell-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1), a key receptor for GDNF. Expression of Ape1/Ref-1 led to an increase in the GDNF responsiveness in human fibroblast. Ape1/Ref-1 induced GFRalpha1 transcription through enhanced binding of NF-kappaB complexes to the GFRalpha1 promoter. GFRalpha1 levels correlate proportionally with Ape1/Ref-1 in cancer cells. The knockdown of endogenous Ape1/Ref-1 in pancreatic cancer cells markedly suppressed GFRalpha1 expression and invasion in response to GNDF, while overexpression of GFRalpha1 restored invasion. In neuronal cells, the Ape1/Ref-1-mediated increase in GDNF responsiveness not only stimulated neurite outgrowth but also protected the cells from beta-amyloid peptide and oxidative stress. Our results show that Ape1/Ref-1 is a novel physiological regulator of GDNF responsiveness, and they also suggest that Ape1/Ref-1-induced GFRalpha1 expression may play important roles in pancreatic cancer progression and neuronal cell survival.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Regulação para Cima/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , NF-kappa B/metabolismo , Invasividade Neoplásica , Neuritos , Neurônios/citologia , Estresse Oxidativo , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas
20.
J Biol Chem ; 284(15): 9845-53, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19176521

RESUMO

53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53BP1 protein interactions may help to further elucidate the function and regulation of 53BP1. We identified protein phosphatase 5 (PP5), a serine/threonine phosphatase that has been implicated in multiple cellular function, as a 53BP1-binding protein. This interaction further confirmed that 53BP1 interacts with PP5 in PP5-overexpressing U2OS cells, after radiomimetic agent neocarzinostatin (NCS) treatment. 53BP1 dephosphorylation at Ser-25 and Ser-1778 was accelerated in PP5-overexpressing U2OS cells following NCS treatment, and its dephosphorylation was correlated with reduced phospho-53BP1 foci formation. In contrast, the overexpression of PP5 had no effect on NCS-activated BRCA1-Ser-1524 phosphorylation. Additionally, PP5 down-regulation inhibited the dephosphorylation of 53BP1 on Ser-1778 and the disappearance of phospho-53BP1 foci following NCS treatment. Moreover, non-homologous end-joining activity was reduced in PP5-overexpressing U2OS cells. These findings indicate that PP5 plays an important role in the regulation of 53BP1 phosphorylation and activity in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Regulação para Baixo , Humanos , Microscopia de Fluorescência/métodos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Ligação Proteica , Fatores de Tempo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Zinostatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...